Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP–SorLA Interaction
نویسندگان
چکیده
The intracellular transport and localization of amyloid precursor protein (APP) are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer's disease (AD). Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G) leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APP (YG/YG) ). Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and changes in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.
منابع مشابه
Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein.
The development and progression of Alzheimer's disease is linked to excessive production of toxic amyloid-β peptide, initiated by β-secretase cleavage of the amyloid precursor protein (APP). In contrast, soluble APPα (sAPPα) generated by the α-secretase is known to stimulate dendritic branching and enhance synaptic function. Regulation of APP processing, and the shift from neurotrophic to neuro...
متن کاملα(2A) adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction.
Accumulation of amyloid β (Aβ) peptides in the brain is the key pathogenic factor driving Alzheimer's disease (AD). Endocytic sorting of amyloid precursor protein (APP) mediated by the vacuolar protein sorting (Vps10) family of receptors plays a decisive role in controlling the outcome of APP proteolytic processing and Aβ generation. Here we report for the first time to our knowledge that this ...
متن کاملSorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1.
SorLA has been recognized as a novel sorting receptor that regulates trafficking and processing of the amyloid precursor protein (APP) and that represents a significant risk factor for sporadic Alzheimer disease. Here, we investigated the cellular mechanisms that control intracellular trafficking of sorLA and their relevance for APP processing. We demonstrate that sorLA acts as a retention fact...
متن کاملNeurobiology of Disease Interaction of the Cytosolic Domains of sorLA/LR11 with the Amyloid Precursor Protein (APP) and -Secretase -Site APP-Cleaving Enzyme
sorLA is a recently identified neuronal receptor for amyloid precursor protein (APP) that is known to interact with APP and affect its intracellular transport and processing. Decreased levels of sorLA in the brain of Alzheimer’s disease (AD) patients and elevated levels of amyloidpeptide (A ) in sorLA-deficient mice point to the importance of the receptor in this neurodegenerative disorder. We ...
متن کاملRetromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing.
sorLA is a sorting receptor for amyloid precursor protein (APP) genetically linked to Alzheimer's disease (AD). Retromer, an adaptor complex in the endosome-to-Golgi retrieval pathway, has been implicated in APP transport because retromer deficiency leads to aberrant APP sorting and processing and levels of retromer proteins are altered in AD. Here we report that sorLA and retromer functionally...
متن کامل